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0 Introduction

What is linguistic meaning? One sort of answer to this question is drawn
from the later work of Ludwig Wittgenstein. Wittgenstein tells us that, for
a large class of uses of the word “meaning,” “the meaning of a word is its
use in the language,” (PI, § 43). Now, Wittgenstein himself clearly did not
intend this claim as a substantive philosophical thesis. He meant it, rather, as
a nothing more than a clarification about our use of the term “meaning,” the
simple observation that, when we inquire about the meaning of some word,
our inquiry is generally settled by a specification of that word’s use, where this
specification can take a number of forms whose aptness will depend on the
context in which the question of meaning has been raised. There are exetegical
disputes one might have as to what, exactly, is meant by Wittgensten’s remark
in the context of the Philosophical Investigations, but, however one wants to
interpret it, it’s clear from the context of this remark that Wittgenstein did not
intend to be initiating a philosophical program with it. Yet, despite his own
intentions in saying what he did, this remark has been turned into a slogan
for a philosophical program for understanding meaning in general: meaning is
use. Here is Michael’s take on this slogan, from his 1988 paper “Kripke and the
Logic of Truth”:

“If we take the slogan ‘meaning is use’ seriously, we will be led
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to think of a language in quite a different way [than the standard
model-theoretic conception]: roughly, as a syntactic structure to-
gether with a set of rules of use. To interpret a language, on this
picture, is to assign a set of rules of use to each term of the language,”
(1988b, 270).

Michael hereby expresses a program, driven by the slogan “meaning is use,”
of systematically assigning rules of use to the expressions of a langauge, and,
in doing so, accounting for their linguistic meaning.

The person who has done the most work in the attempt to actually carry
out this program over the past four decades was one of Michael’s teachers at
Pittsburgh, Robert Brandom. Indeed, Brandom’s work, like that of Dummett
before him, might be summed up as an attempt to take the slogan “meaning
is use” seriously. The first sentence of the Précis of Brandom’s magnum opus
Making It Explicit, for instance, reads, “The book is an attempt to explain the
meanings of linguistic expressions in terms of their use.” Crucially, for Bran-
dom, unlike Wittgenstein, not all aspects of the use of linguistic expressions are
on equal theoretical footing. Brandom assigns theoretical pride of place to the
use of linguistic expressions in inference. Following Frege’s context principle,
Brandom understands the meaning of a word in terms of its role in sentences
and, following an idea that he finds in Frege’s Begriffschrift, Brandom under-
stands meaning of a sentence in terms of its role in inferences, both inferences
to that sentence from other sentences and inferences from that sentence to other
sentences.1 Brandom thus coins the term “inferentialism” to denote the partic-
ular use-theory of meaning according to which the sole aspect of a sentence’s
use that one appeals to in accounting for its meaning is its inferential use.

The inferentialist thesis that for every expression belonging to the lexicon
of a natural language, the entirety of its meaning can be spelled out solely
in terms of its inferential role is an ambitious one, to put it mildly. There
are many aspects of the linguistic meaning of at least some expressions that
it seems difficult if not impossible to account for in entirely intra-linguistic
terms—in terms of inferences from sentences to other sentences. For instance,
the use of words expressing empirical concepts like “red” and “cardinal” seems

1See Brandom (1983) for this geneology of his position.
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to be essentially linked, not just to the use of other words and sentences, but
to such things as the color red and cardinals. That is to say, their use seems
to essentially involve not just an inferential dimension, but a representational
dimension as well. In his 2010 paper, “Representation or Inference: Must We
Choose? Should We?” Michael argues, against Brandom, that inference should
not be given pride of place over representation—that we should recognize
linguistic meaning as essentially involving both a inferential dimension and a
representational dimension, and one is not to be privileged over the other. I
have tried to defend the global inferentialist position in response to Michael—
both in print and in person. I do think I can make a case that the position is
not quite as crazy as it seems, but I’m not going to pursue this line of thought
here. Instead I want to consider Michael’s own defense of inferentialism,
much earlier in his philosophical career, for one restricted class of linguistic
expressions.

A critical test case for the inferentialist account of meaning is the case of
logical vocabulary, words like “not,” “and,” “or,” and “if . . . then . . . .” Whether
or not inferentialism is a plausible thesis for language in general remains to be
seen, but one negative thesis regarding inferentialism is clear: if inferentialism
cannot be made to work for specifically logical vocabuarly, then inferentialism
for language in general is surely hopeless. Unlike the meanings of empirical
words like “red” and “cardinal,” the meanings of logical words like “not” and
“and” don’t seem to have an essentially representational dimension. Rather,
it seems perfectly plausible on its face that, as Michael puts it, “to understand
the meaning of a piece of logical vocabulary is precisely to understand how
it functions in inference,” (1988b). So inferentialism, for logical vocabualry,
is intuitively plausible. Moreover, in terms of the systematic development
of inferentialism, it seems that, here, inferentialists already have much of the
work done for them: for existing proof systems seem to articulate just the sorts
of rules in terms of which the inferentialist thinks the meanings of the logical
connectives can be understood. In particular, the proof systems developed by
Gerhard Gentzen seem particularly suited to the task. In this talk, I’m going to
consider Michael’s attempt to articulate how one of Gentzen’s proof systems—
the sequent calculus—can be understood as providing an inferentialist account
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of the meanings of the logical connectives.
Here’s the plan. In Section One, I explain the sequent calculus and Michael’s

proposal—which goes back to his 1986 dissertation—for understanding its
philosophical significance in terms of the fact that it provides an inferentialist
account of th emeanings of the logical connectives. In Section Two, I provide
very brief history of Brandom’s inferentialism over the past four decades, and
explain how it is only very recently that he has caught up to Michael and de-
cided to do things in terms of the sequent calculus. This will also provide some
further motivation for the sequent calculus formalization of inferentialism. In
Section Three, I raise a fundamental problem for the understanding the mean-
ings of the classical connectives in terms of the sequent calculus: the classical
sequent calculus essentially involves sequents with multiple conclusions, and it’s
not at all clear how such sequents are to be understood. In Section Four, I intro-
duce a conception of the multiple conclusion sequent calculus that has gained
prominence in recent years in response to this issue: the bilateralist conception,
according to which logic ends up not being about consequence at all but about
the coherence or incoherence of sets of affirmations and denials. While this
resolves the problem of making sense of multiple conclusion sequents, it does
so only at the cost of eliminating the very notion of something’s following from
something else from our conception of logic. Finally, in Section Five, I propose
a new kind of sequent calculus, which is equivalent to the classical sequent
calculus, but which resolves both the conceptual problems with multiple con-
clusions while also enabling us to retain the idea that consequence is one of
logic’s principal concerns.

1 Michael on the Significance of the Sequent Calclus

In his 1935 dissertation, Gentzen introduced two new kinds of proof stystems:
natural deduction and the sequent calculus. The first sort of system is the one
that is nowadays taught in most introductory logic courses. Beyond its use in
introductory logic, however, natural deduction is the principal sort of system
appealed to by philosophers interested in providing an inferentialist account
of the meanings of the logic connectives. Gentzen’s second sort of system—the
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sequent calculus—while it has a small circle of hardcore proponents, is still
not widely appreciated in broader philosophical circles.2 The key difference
between these two systems is that, whereas natural deduction systems provide
rules for moving from particular formulas to other particular formula, sequent
systems provide rules for moving from sequents, which themselves encode in-
ferential relations between particular formulas, to other sequents. So, whereas
one operates at the first-order inferential level in using a natural deduction sys-
tem, one operates at the meta-inferential level in using a sequent calculus. In
his 1988 paper, “Logic and Meaning: The Philosophical Significance of the
Sequent Calculus,” Michael explores the idea that the sequent calculus can be
understood as providing an inferentialist account of the meanings of the logical
connectives.

Now, as I noted, the classical sequent calclus notably features multiple
conclusions, and I will get to this fact and the issues it raises shortly. First,
however, to explain Michael’s basic proposal for understanding the significance
of the sequent calculus, let us consider the more intuitive single conclusion
case. Here, a sequent of the form Γ ` A, where Γ is a set of sentences and A is
a single sentence, can be understood as saying that the conclusion A follows
from the premises Γ, that Γ implies A. Unlike a natural deduction system,
where the connectives are given introduction and elimination rules, in the
sequent calculus, logical connectives are given just introduction rules: a rule
(or number of rules) for introducing a sentence with that connective on the left
side of a sequent, and a rule (or number of rules) for introducing a sentence
with that connective on the right side of a sequent. Consider, for instance, the
following left and right rules for conjunction:

Γ,A,B ` C
Γ,A ∧ B ` C L∧

Γ ` A Γ ` B
Γ ` A ∧ B R∧

The left rule says that if some conclusion C follows from A along with B (along
with some set of auxillary premises Γ), then C follows from Γ along with A∧B.

2Gentzen himself regarded the sequent calclus as a little more than a convenient formal
set-up—much more artificial than the natural deduction set-up—in the context of which he
could proof his main theorem of Cut Elimination.
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The right rule says that if some set of premises Γ implies A and Γ also implies
B, then Γ implies A ∧ B.

Michael’s key thought in interpreting such rules as providing an infer-
entialist semantics for the logical connectives is that the inferential role of a
sentence can be understood in terms of two aspects: its role as a premise of
inferences—where various other things follow from it (potentially along with
other things)—and its role as a conclusion of inferences—where it follows from
various other things. These two aspects are respectively codified by the left
and right rules of a sequent calculus. Michael writes:

[T]o grasp the meaning of a logical constant is just to know how it
behaves in inference. We can think of the sequent calculus introduc-
tion rules for a logical constant as representing the two aspects of its
use; the left introduction rule tells us how it behaves in the premises
of inferences, while the right introduction rule tells us how it be-
haves in the conclusions of inferences. Thus, the left introduction
rule specifies the consequences of sentences containing the logical
constant in question, while the right introduction rule specifies the
grounds of such sentences.

In this way, the meaning of a logical connective can be understood as given, in
inferentialist terms, by the left and right rules in a sequent calclus. For instance,
the meaning of conjunction is given by these rules here.

As Aurthur Prior famously showed, however, not just any set of left and
right rules ought to count as defining a legitimate meaning. Consider the
connective tonk who’s meaning is purportedly given by the following rules:

Γ ` A
Γ ` A tonk B

Γ,B ` C
Γ,A tonk B ` C

So, if Γ implies A, then Γ implies A tonk B, and if Γ along with B implies some
conclusion C, then Γ along with A tonk B implies C. These seem like perfectly
coherent inferential rules. However, insofar as our consequence relation is
transitive, so that we can link proofs together, introducing a connective into
our logical language with these rules will trivialize the consequence relation of
that langauge, making it the case that anything follows from anything else, as
shown in the following proof of p ` q for arbitrary p and q:
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p ` p
p ` p tonk q

q ` q
p tonk q ` q

p ` q

Prior concludes with the challenge of specifying why the and rules count as
defining a meaning, but the tonk rules don’t. In an equally famous reply to
Prior, Neul Belnap (1962) argues that a necessary condition for a set of rules
counting as definitive of the meaning of a logical connective is that introducing
a connective into a language with those rules constitute a conservative extension
of that language, such that no new sequents containing only old vocabulary
come to be derrivable as a result of introducing the new vocabulary.

In a natural deduction setting, Michael Dummett termed this requirement
of conservativity as a requirement of harmony between the introduction and
elimination rules: the elimination rules must not be too strong, relative to the
introduction rules. In the proof-theoretic framework for natural deduction
developed by Daq Prawitz, this requirement is demonstrated by a reduction,
showing that, in any proof in which some compound formula is introcued only
to be subsequently eliminated can be reduced to one that doesn’t contain the
detour through the introduction and elimination of that compound formula.
One of the key insights of Michael’s paper is that, in a sequent calclus setting,
the criterion of harmony can be understood as formally established by a proof
of the eliminibility of the structural rule of Cut:3

Γ ` A ∆,A ` B
Γ,∆ ` B

Cut

Here, in the single conclusion context, it’s clear that Cut is a transitivity rule. It
says that if A can be derived from some set of premises Γ, and, if A along with
another set of premises ∆ derives B, then B can be derived directly from Γ,∆.
In the proof of p ` q by way of the tonk rules, shown again here:

p ` p
p ` p tonk q

q ` q
p tonk q ` q

p ` q Cut

3As a technical result, the equivalence of normalization in natural deduction and Cut
elimination in the sequent calculus was noted already by Prawitz (and hinted at by Genzten),
but Michael’s insight is to rearticul
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the Cut rule needs to be used to derive this sequent. There’s no way of derriving
the same sequent without the use of Cut. In other words, in this proof, Cut
is ineliminable. This contrasts the “improper” logical connective tonk with
“proper” logical connectives like conjunction given again by the following
rules:

Γ,A,B ` C
Γ,A ∧ B ` C L∧

Γ ` A Γ ` B
Γ ` A ∧ B R∧

For proofs involving these rules, Cut is eliminable. It’s easy to see how, techni-
cally, the eliminability of Cut for sequent rules for some bit of logical vocabulary
ensures that these rules are conservative, for the conclusions of those rules will
always contain that vocabualry. The only rule that can take you from premise
sequents containing that new vocabulary to a conclusion sequent containing
only old vocabulary is Cut. So, if everything that one can with Cut can be
derrived without Cut, this means that one cannot use the sequent rules for the
new vocabulary to derrive sequents containing only old vocabulary.

Though it’s clear that proving Cut Elimination amounts to proving con-
servativity, to appreciate how proving Cut Elimination amounts to proving a
kind of harmony between the left and right rules, it is illuminating to actually
look at the proof. The actual proof of Cut Elimination is an induction on Cut
formula complexity in which we show, first, that Cut on atomic formulas is
eliminable and second, that when we use Cut on a complex formula to derrive
some sequent, we can always derrive the same sequent by using Cut on simpler
formulas. Here is the transformation showing that this inductive step holds
for conjunction:

Γ ` A Γ ` B
Γ ` A ∧ B

∆,A,B ` C
∆,A ∧ B ` C

Γ,∆ ` C

 

Γ ` B
Γ ` A ∆,A,B ` C

Γ,∆,B ` C
Γ,∆ ` C
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This shows that, by using Cut to link up a sequent in which A ∧ B has been
introduced on the right (by way of the right rules) with a sequent in which
A ∧ B has been introduced on the left (by way of the left rules), one cannot
obtain anything that one could not already obtain by linking together the
premises that that go into getting A ∧ B on the right and A ∧ B on the left.
Thus, the rules definitive of the meaning of A ∧ B are harmonious in that
the consequences of A ∧ B are not too strong relative to the grounds of A ∧ B.
This is precisely what is not the case for tonk, as shown by the fact that no
transformation of this form is possible. In this way, Michael puts forward a
way of understanding the conceptual significance of the sequent calculus as
providing an inferentialist account of meaning of the logical connectives, and
the key theorem of the sequent calculus—Cut Elimination—as providing the
key criterion of harmony required for a set of rules to count as actually defining
a logical meaning.4

2 A Brief Recent History of Brandom’s Inferentialism

In a moment, I’m going to raise some problems with this conception of the
sequent calculus, but, before I do, I just want to point out that Michael was
quite ahead of his time here in spelling out inferentialism in terms of the sequent
calclus. It is only quite recently that Brandom has caught up and decided to
do things in this manner. As a way of providing some further motivation
for the use of the sequent calculus in the context of inferentialist semantics,
let me now briefly overview where Brandom’s inferentialism has gone in the
thirty-five years since Michael’s paper.

4Michael sums up this conception as follows:

[W]e may view the meaning of a term, that which is grasped by one who under-
stands that term, as having two fundamental aspects. These are the grounds of
sentences involving that term, and their consequences. To give the meaning of a
term, we must specify these two aspects, and there must be a harmony between
them. In the case of a logical constant, we specify these two aspects of its meaning
by means of the left and right introduction rules; the requirement of harmony
is that the application of the rules should result in a conservative extension of
the language fragment lacking the introduced term. A proof of cut-elimination
suffices to establish this.
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When Michael was at Pittsburgh in the mid 80s, drafts of Making It Explicit
had been circulating at Pittsburgh for some time. The book, published in 1994,
systematically lays out inferentialism as a global theory of meaning. However,
it contains no formal framework for actually doing inferentialist semantics.5

Brandom’s first real attempt at such a formal framework didn’t come until
the formal incompatibility semantics put foward in his 2006 Locke Lectures
(published in 2008 as Between Saying and Doing). This semantics, however, had
a crucial problem: the consequence relations it defined were montonic. It was
built into the semantic framework at ground level that if a set of sentences X is
incompatible with a set of sentences Y, then any superset of X is incompatible
with Y. The problem is that the concept of material incompatibility that the
semantics is meant to be modeling simply doesn’t work like this. For instance,
“Sadie’s a mammal” is incompatible with “Sadie lays eggs,” but “Sadie’s a
mammal” along with “Sadie’s a platypus” isn’t incompatible with “Sadie lays
eggs.” Even just in the context of providing an account of the meanings of
the logical connectives (bracketing the question of providing an account of the
meanings of such expressions as “mammal” and “platypus”), this is a serious
problem, since the sentences with which we use logical connectives include
such sentences as these sentences about animals. The concept of negation
defined in Brandom’s incompatibility semantics, thus can’t be the concept of
negation that we’re using when we infer from “Sadie’s a mammal” to “Sadie
doesn’t lay eggs.” Since it seems like we’re deploying the very same concept
of negation when we infer from “Sadie’s a mammal” to “Sadie doesn’t lay
eggs” as when we infer from “The ball’s red” to “The ball’s not green,” this is
a serious problem.

It is for this reason that, in the early 2010s, Brandom, moved by technical
work by his student Ulf Hlobil, ended up coming around to formulating infer-
entialism in terms of the sequent calculus. One feature of the sequent calculus

5One step towards a formal inferentialist framework was made by Michael’s brother Phillip,
along with Mark Lance, who, the same as Making It Explicit was published, put forward a set
of proof systems for conditionals meant to capture the notion of committive consequence that
plays a central role in Brandom’s work. These systems were quite limited in scope, however,
with really just the conditional as the target connective, and didn’t offer the prospect of a
general framework for inferentialist semantics
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is that it forces one to explicitly use structural rules such as Monotonicity, or,
as Gentzen put it, Weakening:

Γ ` A
Γ,B ` A

Weakening

The fact that the use of a structural rule such as Weakening itself constitutes
a logical step in the sequent calculus makes it possible construct substructural
logics: logical systems that work without the use of such rules. Now, there are
different reasons to want a logical system that works without such rules, but,
for Brandom, the reason is so that the system is able to accomodate sequents
for which they actually fail. Of course, Weakening holds for any strictly logical
inference. If A logically entails B, then, no matter what premises you add to
A, you’ll still have a logical entailment. However, by rejecting Weakening,
we can introduce into our logical system not just sequents encoding logical
entailments, but sequents encoding defeasible material inferential relations as
well. For instance, we can add, as an non-logical axiom of our sequent calculus,
a sequent such as:

bird ` flies

and we can do this while maintaining

bird,penguin 0 flies

Now Gentzen’s own sequent calculi require the structural rule of Weakening
to function. Moreover, the connective rules enforce Weakening with conjuncts
and disjuncts. For instance, Gentzen’s left-conjunction rules are the following:

Γ,A ` ∆
Γ,A ∧ B ` ∆

L∧1

Γ,B ` ∆
Γ,A ∧ B ` ∆

L∧2

These rules would let us reason from

bird ` flies

to
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bird ∧ penguin ` flies.

And, of course, this is an unacceptable consequence. However, by tweaking the
rules, we can avoid such consequences. In his 1944 dissertation, Oiva Ketonen
put forward a classical sequent calclus in which not just Cut, but Weakening
as well, is eliminable.6 Here is Ketonen’s classical sequent calculus:

Γ,A ` A,∆
Ax

Where Γ, ∆, and {A} contain only atomics.

Γ ` A,∆
Γ,¬A ` ∆

L¬
Γ,A ` ∆

Γ ` ¬A,∆ R¬

Γ,A,B ` ∆
Γ,A ∧ B ` ∆

L∧
Γ ` A,∆ Γ ` B,∆

Γ ` A ∧ B,∆ R∧

Γ,A ` ∆ Γ,B ` ∆
Γ,A ∨ B ` ∆

L∨
Γ ` A,B,∆

Γ ` A ∨ B,∆ R∨

Γ ` A,∆ Γ,B ` ∆
Γ,A→ B ` ∆

L→
Γ,A ` B,∆

Γ ` A→ B,∆ R→

Note that the axiom schema here is distinct from the more familiar axioms
schema of Reflexivity: A ` A. Ketonen’s axiom schema generalizes Reflexivity
to allow for axioms in which additional formulas have been added in on the
left or right. This builds in all of the Weakening one needs for classical logic in
the axioms, and so Weakening as a structural rule can be eliminated. Because
Weakening is eliminable, this system permits the addition of non-logical ma-
terial axioms for which Weakening actually fails, and, unlike Gentzen’s rules,
the rules of this system play nicely with such axioms. For instance, if you look
at the conjunction rules:

Γ,A,B ` ∆
Γ,A ∧ B ` ∆

L∧
Γ ` A,∆ Γ ` B,∆

Γ ` A ∧ B,∆ R∧

you’ll see that we can no longer derive

6And, moreover (and more technically significantly), Contraction is eliminable as well, but
I’ll ignore this fact here, as I am, for simplicity, treating sequents as relating sets.
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bird ∧ penguin ` flies.

from the sequent

bird ` flies

We need the sequent

bird,penguin ` flies

which we won’t include as a material axiom, since it’s not a good material
inference.

The current formal inferentialist framework endorsed by Brandom involves
simply adding to this sequent calculus additional non-logical material axioms
for which Weakening may actually fail, such as the following:

1. red ` colored

2. red,green `

3. bird ` flies

4. mammal, lays eggs `

Weakening holds for the first two of these sequents, but it fails for the second
two, and, notably, all of them are integrated into the same logical system whose
rules are proposed as definitive of the meanings of the logical connectives.
Thus, we are entitled to say that there is a single meaning of words like “not”
and “and” which we grasp whether we’re reasoning about monochromatic
solids or animals. In this way, doing things in terms of the sequent calculus
constitutes a definitive advance in the formal development of inferentialism.

This is the main way in which Brandom now formally conceives of the
inferentialist program, and precisely the conception of the sequent calculus
put forward by Michael 35 years prior suggests itself here. This conception is
explicit in the work of Brandom’s recent student, Dan Kaplan, who’s largely
responsible for this current formal set-up. Kaplan introduces the sequent
calculus formalization of inferentialism as follows:
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[T]he meaning of a sentence is given by its role as a premise and a
conclusion in argument, or as I shall say: the meaning of p just is
the contribution that p makes to the goodness of implication. Thus,
we might understand the meaning of p as specified in:

Γ1, p ` ∆1

Γ2, p ` ∆2
...

Γn, p ` ∆n
...

Γ1 ` p,∆1

Γ2 ` p,∆2
...

Γn ` p,∆n
...

On an inferentialist understanding of meaning, we treat the mean-
ing of p as the contribution it makes to good inference above.

Of course, this is just the understanding that Michael lays out. Brandom
himself, however, is uneasy with this formulation. Let me explain why.

3 The Issue of Multiple Conclusions

You will note that the sequent calculus I’ve just shown features multiple conclu-
sions. This is an essential feature of this system, and it is an essential feature of
classical sequent calclui in general. Now, a multiple conclusion sequent is not
a collection of single conclusion sequents. That is, the sequent Γ ` ∆ is not to
be understood as shorthand for the set of sequents Γ ` A for each A ∈ ∆. That
would be to take the elements of ∆ to be collected conjunctively, and the crucial
idea of a multiple conclusion sequent calculus is that, whereas the premises of
a sequent are collected conjunctively, the conclusions are collected disjunctively.
This raises a serious interpretive problem. In a single conclusion sequent, we
can read what goes to the left of the turnstile as the premises of an argument,
and what goes to the right of the turnstile as the conclusion. We have a clear
pre-theoretical grip on what it is for a set of premises, taken together, to imply
a conclusion. That is, we have a clear pre-theoretical grip of what it is for an
argument of the form “A, B, C, therefore D” to be a good one. We employ
such arguments in our everyday practices of reasoning, and we have a grip
on the pragmatic force such arguments are supposed to have. We also have a
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fine enough pre-theoretical grip on an argument of the form “A, B, C, there-
fore D, E,” where the conclusions are taken conjunctively. But the idea of an
“argument” with “premises” A, B, C and the “conclusions” D, E, where the
“conclusions” D and E are to be taken disjunctively does not find much pre-
theoretical traction in our actual practices of reasoning. Of course, we have
a grip of what it is for a set of premises to entail single conclusion that is a
disjunction, but the multiple conclusions of a sequent are not to be interpreted
in that way any more than the multiple premises are to be interpreted as a
single conjunction, as doing so would preclude us from being able to appeal
to such sequents in giving an account of the meanings of these propositional
connectives.

The issue of making good sense of multiple conclusion sequents—and doing
so in a way that does not pressupose grasp of the logical connectives whose
meanings they are supposed to formally accounting for—has long been the
bugbear haunting proponents of multiple conclusion sequent calculi in the
context of inferentialist semantics. Many proponents of inferentialist semantics
remain convinced that, as Florian Steinberger (2011) puts it, “Conclusions
Should Remain Single.” Given this issue, though Michael’s explication of the
conceptual significance of the sequent calculus surely holds up just fine for the
intuitionistic sequent calculus, which features only single conclusion sequents,
it is doubtful that the case of the classical sequent calculus can be understood so
straightforwardly. To illustrate the problem here, consider the negation rules
of Ketonen’s sequent calclus (which are the same as those in Gentzen’s LK):

Γ ` A,∆
Γ,¬A ` ∆

L¬
Γ,A ` ∆

Γ ` ¬A,∆ R¬

To a large extent, it is these rules that elevate the proof-theoretic status of the
classical sequent-calclus above that of natural deduction for classical logic. For,
while the rules for negation in natural deduction rules are not harmonious (the
double negation elimination rule is too strong relative to the introduction rule
of reductio ad absurdum)—these rules clearly are harmonious by the sequent
calculus’s criterion of harmony: Cut Elimination. However, despite the proof-
theoretic failing of the negation rules for natural deduction, those rules at
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least make intuitive sense, and the same cannot be said for these negation rules.
Indeed, it’s not at all clear what these rules actually say.

On Michael’s proposed reading of the sequent calclus, these rules for nega-
tion respectively tell us that the inferential role of A as a conclusion is the same
as the inferential role of ¬A as a premise, and the inferential role of A as a premise
is the same as the inferential role of ¬A as a conclusion. Clearly, this does not
make any sense apart from thinking of conclusions as multiple, and we simply
don’t have a clear pre-theoretical sense of multiple conclusion “implications”
to appeal to here. Of course, we can make sense of them if we appeal to our
understanding of disjunction and its interaction with negation. For instance,
considering just the case where Γ and ∆ are single formulas, we can rewrite the
negation rules as follows:

B ` A ∨ C
B,¬A ` C

B,A ` C
B ` ¬A ∨ C

Clearly, if B implies A or C, then B along with ¬A must imply C, and if B along
with A implies C, then B must imply either ¬A or C (after all, implying both A
and ¬C would contradict the premise). By appealing to our understanding of
disjunction and its interaction with negation, we can see intuitively that these
rules are indeed sound. But, of course, we cannot appeal to this understanding
if we want to appeal to these rules in order to account of the sense of these
logical constants. Alternately, we can make sense of the soundness of the rules
by appealing to a semantic interpretation of sequents according to which a
sequent is valid just in case there’s no valuation such that all of the premises
are true and all of the conclusions are false, but, once again, such an appeal
is ruled out insofar as we’re aiming to provide a proof-theoretic rather than
model-theoretic account of the meanings of the logical connectives. The same
problem can be raised for the other connective rules.

This is not a new problem, and I’m not going to give an exhaustive account
of proposed solutions and their potential issues here.7 Instead, I want to
consider one prominent response to this problem that has emerged in recent
years that has transformed many people’s conception of the basic topic of logic.

7See Steinberger (2011) for such a discussion.
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I will raise a problem for this response as well, but I think it takes us in the
right direction.

4 Restall’s Bilateralism

In response to these concerns about multiple conclusions, Greg Restall (2005,
2009) has proposed a reading of multiple conclusion sequents according to
which the turnstile plays the role not of separating premises from conclusions
but of separating affirmations from denials.8 On this bilateralist reading of mul-
tiple conclusion sequents, a sequent of the form Γ ` ∆ says that the position
consisting in affirming everything in Γ and denying everything in ∆ is incoher-
ent or “out of bounds.” To see how this interpretation resolves our problem
with multiple conclusions, consider again the negation rules of the classical
sequent calculus:

Γ ` A,∆
Γ,¬A ` ∆

L¬
Γ,A ` ∆

Γ ` ¬A,∆ R¬

On the bilateralist interpretation, the left rule says that if the position consisting
in affirming everything in Γ, denying everything in ∆, and denying A is out
of bounds, then the position consisting in affirming everything in Γ, denying
everything in ∆, and affirming ¬A is out of bounds. The right rule says that
if the position consisting in affirming everything in Γ, denying everything in
∆, and affirming A is out of bounds, then the position consisting in affirming
everything in Γ, denying everything in ∆, and denying¬A is out of bounds. So,
understanding the significance of speech acts in terms of their contribution to
the (in)coherence of positions, this rule tells us that an affirmation of¬A has the
same significance as a denial of A, and a denial of ¬A has the same significance

8Or assertions from denials, or acceptances from rejections, or some other pair of opposite
linguistic or mental acts. I speak here in terms of affirmations and denials, following Rumfitt
(2000), but the particular pair of opposite acts one opts for doesn’t matter for our purposes.
Elsewhere (Simonelli 2022), I have articualted bilateralism in terms of the opposite normative
statuses of commitment and preclusion of entitlement. That reading is also available here, with
minor tweaking of the sense of the turnstile. Alternately, following Hlobil (2021), one might
think of this bilateralist set up in terms of truth and falsity. What follows can be translated into
any of these vocabularies.
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as an affirmation of A. By substituting talk of premises and conclusions with
talk of affirmations and denials, we get a conception of the sequent rules for
negation that makes clear intuitive sense.

There are two points I want to make about this bilateralist reading of the
multiple conclusion sequent calculus that will eventually bring us to the con-
ception of the sequent calculus I want to endorse. The first point is that, if we
do read the multiple conclusion sequent calculus in this bilateralist fashion,
the notation of writing sequents as formulas of the form Γ ` ∆ because a bit
misleading, since Γ ` ∆ does not really express a relation of implication or con-
sequence betweent he sets of sentences Γ and ∆ at all. Rather, it expresses the
incoherence of the set consisting in the affirmation of all sentences in Γ and the
denial of all of the sentences in ∆. A more perspicuous notation, then, would
be to follow bilateralists such as Smiley (1996) and Rumfit (2000) and formulate
the bilateralism of Restall and Ripley in a bilateral notation in which formula
are positively or negatively signed, explicitly marking affirmations and denials
in the notation itself. In such a system, in order to constitute a well-formed
formula, a sentence must be prefaced with a positive or negative force-marker,
expressing either the affirmation or denial of that sentence. Thus, the affirma-
tion of a sentence A can be written as +〈A〉, and the denial for A can be written
as−〈A〉. Unlike a negation operator, these force-markers are neither embedable
or iterable; there must always be exactly one force-marker and it must always
be prefixed to a whole sentence. So, for instance, although both +〈p ∧ ¬q〉 and
−〈¬p〉 are well-formed, neither +〈p ∧ −〈q〉〉 nor −〈−〈p〉〉 are well-formed.

Now, talk of adding “force-markers” into the logical language might be
setting off the alarm bells for the Wittgensteinians in the audience. I won’t be
able to assuage all of your concerns right now, but I will briefly say a few things
to ease them a bit. To bring everyone up to speed, in the Tractatus, Wittgenstein
remarks Frege’s judgment stroke (the “assertion sign” as he calls it) as “logically
altogether meaningless,” and, later in the Investigations, he compares the use of
the judgment stroke to our saying “It is asserted:” before every sentence, which
he claims would be completely “superfluous.”9 All of this, I take it, is quite
right. However, I take it that it is perfectly possible to agree with Wittgenstein

9See Gustaffson (2018)
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that Frege’s use of a force-marker is logically meaningless while maintaining
that this does not speak against the use of force-markers in general, for one can
maintain that Frege’s judgment stroke is meaningless precisely because he only
has one force-marker in his logical system and every formula must be prefaced with
it in order to be well-formed. As such, it doesn’t actually do anything—it has no
logical use in the system. Accordingly, given a conception of logical meaning as
logical use, it is, as Wittgenstein puts it, “logically altogether meaningless.” In
the bilateral notation I’m proposing here, there are crucially two distinct force-
markers, and they interact with each another in systematic ways, as specified
by the poof rules of the logical system. It is through their use in the system that
they can be understood as logically meaningful, expressing to opposite ways
of standing with respect to a sentence or proposition. You may still have some
concerns, and I’m happy to hear them, but I hope, by the end of the talk, you
will have seen enough of the elucidatory work that bilateral notation can do to
not dismiss it outright.

With that out of the way, let us note that it simple to translate multiple
conclusion sequents, interpreted in bilateralist fashion, to sets of positively
and negatively signed formulas: a sequent of the form Γ ` ∆, where Γ and ∆

contained unsigned sentences, is mapped to a set of signed sentences Θ, where
Θ = {+〈A〉 | A ∈ Γ} ∪ {−〈A〉 | A ∈ ∆}. That is, Θ is set the consisting in a
formula of the form +〈A〉 for sentence A in Γ along with a formula of the form
−〈A〉 for every sentence A in ∆. (In what follows, I maintain the convention of
using Γ and ∆ for sets of unsigned sentences and Θ and Λ for sets of signed
sentences.) In this explicitly bilateral notation, rather proof rules for inferring
between sequents consisting in sets of sentences flaking a turnstile on each
side, we have rules for inferring between sets of signed formulas. A set’s
being derivable means that the position consisting in all of the affirmations
and denials in that set is out of bounds, and a sentence is a logical theorem just
in case the singleton containing the denial of that sentence is derrivable from
logical axioms.

To formulate the previously considered sequent calculus in this new no-
tation, let us introduce the further notational convention of using lower-case
Greek letters to indicate signed formulas, which may be either affirmations or
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denials, where starring a signed formula yields the oppositely signed formula.
So, if ϕ is the affirmation of A, then ϕ∗ is the denial of A and vice versa. With
these notational conventions, Ketonen’s sequent calculus, on Restall’s bilateral
understanding of it, comes out, in explicitly bilateral notation, as follows:

Θ, ϕ, ϕ∗
Ax

Where Θ and {ϕ} contain only signed atomics.

Θ,−〈A〉
Θ,+〈¬A〉

+¬
Θ,+〈A〉

Θ,−〈¬A〉
−¬

Θ,+〈A〉,+〈B〉
Θ,+〈A ∧ B〉

+∧
Θ,−〈A〉 Θ,−〈B〉

Θ,−〈A ∧ B〉
−∧

Θ,+〈A〉 Θ,+〈B〉
Θ,+〈A ∨ B〉

+∨
Θ,−〈A〉,−〈B〉
Θ,−〈A ∨ B〉

−∨

Θ,−〈A〉 Θ,+〈B〉
Θ,+〈A→ B〉

+→
Θ,+〈A〉,−〈B〉
Θ,−〈A→ B〉

−→

In this notation, it’s explicit that what the axiom schema says is that any position
that consists in affirming some atomic sentence and also denying that atomic
sentence is incoherent. Moreover, if you look at the negation rules here, you
can see that they explicitly show in the bilateral notation itself, what the more
familiar formulation of them says, on a bilateralist interpretation of them.

Now, let us turn to consider the significance of Cut. In the multiple conclu-
sion setting the rule of Cut is the following:

Γ,A ` ∆ Γ′ ` A,∆′

Γ,Γ′ ` ∆,∆′
Cut

In this bilateral notation, we can put the Cut rule more simply as follows,
where, once again Θ and Λ are sets of signed formulas:

Θ, ϕ Λ, ϕ∗

Θ,Λ
Cut
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Cut is now no longer straightforwardly a transitivity rule, as it is in the single
conclusion case. The intuitive reasoning behind this structural rule is as fol-
lows. If the set Θ, ϕ is out of bounds, then, if one takes all of the stances in Θ,
then one cannot take stance ϕ.10 If the set Λ, ϕ∗ is out of bounds, then, if one
takes all of the stances in Λ, then one cannot coherently take stance ϕ∗. So, if
both Θ, ϕ and Λ, ϕ∗ are out of bounds, then, if one takes all of the stances in
Θ,Λ, then one cannot coherently take either ϕ or ϕ∗. Given the rule of Cut,
this means that Θ,Λ must itself be incoherent. As articulated by Restall, this
amounts to an extensibility condition on coherent position: any coherent posi-
tion can’t rule out both positive and negative stances towards some sentence;
it must be coherently extendable to one of these stances. This is, of course,
indeed the case for the classical sequent calculus, as is shown by a proof that
the rule of Cut is eliminable. In this context, the sort of harmony established
by the proof of Cut Elimination is no longer a harmony between left and right
rules, but, rather, between positive and negative rules. It thus encodes the fact
that the conditions ruling out the affirmation of a logically compound sentence
are not too strong or weak relative to the conditions for ruling out the denial of
that sentence.

Restall’s bilateralism does resolve the problem of making sense of the mul-
tiple conclusion connective rules. However, it seems to come at a price: logic
no longer concerns consequnce at all. It only concerns (in)coherence. The legit-
imacy of this move from from thinking of the rules governing the use of logical
expressions in terms of consequence to thinking about them in terms of con-
straints on coherence is given some expression by Wilfrid Sellars. In “Meaning
as Functional Classification,” Sellars writes:

It should be stressed that the uniformities involved in meaningful
verbal behavior include negative uniformities, i.e., the avoidance of
certain combinations, as well as positive uniformities, i.e., uniformi-
ties of concomitance. Indeed negative uniformities play by far the

10I use the term “stance” here and in what follows to speak neutrally about affirmations and
denials. I use this term ambiguously (just as “affirmation” and “denial” are used ambiguously
in natural language) to speak both of affirmations and denials towards particular propositions
(notated with expressions like ϕ and ϕ∗) and affirmations and denials in abstraction from
attachment to any particular propositions (notated with expressions like like a and a∗).
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more important role, and the rules which govern them are to be
construed as constraints rather than incentives, (Sellars 1974, 86).

There is surely some truth to Sellars’s statement here. Still, it feels like this
bilateralist understanding of logic, according to which logic’s concern is just
incoherence, is incomplete. Surely logic doesn’t just make negative demands
on what one can’t maintain; it also makes positive demands on what one must
maintain, at lest insofar as one maintains or is committed to maintaining other
things. It is this positive notion of committive consequence, I take it, that Ian
Rumfit (2008) is speaking of when he speaks of “the force of consequence”
which he criticizes a Restall’s understanding of the turnstile for lacking.11 In
illustrating this notion of force, he considers a hypothetical (or perhaps actual)
exchange with a student in one of his seminars:

What do you mean, you refuse to accept B? You continue to adhere
to A, and I’ve shown you that B follows from A.

Rumfit takes it that, given the student’s acceptance of A and acknowledgment
of the fact that B follows from A, she’s obliged to accept B. On Restall’s un-
derstanding of validity, all one can say here is that she is precluded from being
entitled to deny B. Of course, Rumfitt acknowledges that is indeed the case, but
he thinks is crucial that we be able to say some further here as well: that, given
the stances that she has taken, she’s committed to affirming B.

The core problem with Restall’s bilateralist interpretation of the sequent
calculus is that the very notion of something’s “following from” something
else drops out of the understanding of the logical system entirely. If the for-
mal framework in which we pursue an inferentialist semantics for the logical
connectives is a multiple conclusion sequent calculus, and we understand this
sequent calculus in Restall’s fashion, where there is no notion of an inferential
relation at all, calling our framework “inferentialist” would be quite an irony,
to put it mildly. It is natural to wonder whether we can have our cake and
eat it too: whether we can have the intuitive understanding the connective
rules of the multiple conclusion sequent calculus that the bilateralist proposes,

11

22



while nevertheless maintaining that our logical system doesn’t just concern
coherence, but consequence as well. I’ll now propose a new bilateral system
that enables us to do just that.

5 A Broader Bilateralist Logic

To introduce the bilateral sequent calculus I’m going to propose, let me first
return to the unilateral sequent calculus to explain a feature that I glossed over
earlier. Earlier, when I was discussing the sequent calculus formalization of
inferentialism, I showed you the following two sequents:

red ` colored
red,green `

The significance of the first sequent was explicitly explianed, but you might
have been wondering the meaning of the second of these two sequents, which
has two sentences on the left side and an empty right side. Given the negation
rules we discussed earlier:

Γ ` A,∆
Γ,¬A ` ∆

L¬
Γ,A ` ∆

Γ ` ¬A,∆ R¬

such a sequent can be understood as encoding the incompatibility between these
sentences, since, from these rules and this sequent, we can derrive:

red ` ¬green

and

green ` ¬red

In general, a sequent of the form Γ ` can be understood as formally encoding
the fact that the set of sentences Γ is incoherent, as borne out by the fact that,
for all Γ′, where Γ′ = Γ \ {A}with A ∈ Γ, Γ′ ` ¬A.

In a bilateral system, we can get the same behavior at the structural level
by way of following pair of rules:
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Θ, ϕ `
Θ ` ϕ∗

Out
Θ ` ϕ
Θ, ϕ∗ `

In

The Out rule can be understood as saying that, if the position consisting in all
of the stances in Θ along with stance ϕ is incoherent, then Θ commits one to
taking the opposite stance ϕ∗, whereas the In rule can be understood as saying
that, if Θ commits one to taking the stance ϕ, then the position consisting
Θ along with the opposite stance ϕ∗ is incoherent. With these rules in view,
consider the following sequent:

+〈red〉,+〈green〉 `

This says that the position consisting in affirming “x is red” and affirming “x
is green” is incoherent. The incoherence of the position consisting in both of
these affirmations can be understood in terms of the fact that affirming “x is
red” commits one to denying “x is green” and affirming “x is green” commits
one to denying “x is red,” where the relation between all of these inocherence
and incompatibility facts is codified by In and Out, as, given these rules, this
sequent is equivalent to this one:

+〈red〉 ` −〈green〉

and this one:

+〈green〉 ` −〈red〉

Now, recall, in the previous calculus, we just had sets of signed formulas
and no turnstile, and a set’s being derivable means that the position consisting
in all of the stances in that set is incoherent. We can now make this fact explicit
in the logical system: we simply add a turnstile to the right of all of the rules:

Θ, ϕ, ϕ∗ `
Ax

Where Θ and {ϕ} contain only signed atomics.

Θ,−〈A〉 `
Θ,+〈¬A〉 `

+¬
Θ,+〈A〉 `

Θ,−〈¬A〉 `
−¬
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Θ,+〈A〉,+〈B〉 `
Θ,+〈A ∧ B〉 `

+∧
Θ,−〈A〉 ` Θ,−〈B〉 `

Θ,−〈A ∧ B〉 `
−∧

Θ,+〈A〉 ` Θ,+〈B〉 `
Θ,+〈A ∨ B〉 `

+∨
Θ,−〈A〉,−〈B〉 `
Θ,−〈A ∨ B〉 `

−∨

Θ,−〈A〉 ` Θ,+〈B〉 `
Θ,+〈A→ B〉 `

+→
Θ,+〈A〉,−〈B〉 `
Θ,−〈A→ B〉 `

−→

To turn this calculus of incoherence into a calculus of consequence, we now
simply apply Out to all of these sequents. This gives us the following sequent
calculus:

Θ, ϕ ` ϕ
Ax

Where Θ and {ϕ} contain
only signed atomics.

Θ ` ϕ
Θ, ϕ∗ `

In
Θ, ϕ `
Θ ` ϕ∗

Out

Θ ` −〈A〉
Θ ` +〈¬A〉

+¬
Θ ` +〈A〉

Θ ` −〈¬A〉
−¬

Θ ` +〈A〉 Θ ` +〈B〉
Θ ` +〈A ∧ B〉

+∧
Θ,+〈A〉 ` −〈B〉
Θ ` −〈A ∧ B〉

−∧

Θ − 〈A〉 ` +〈B〉
Θ ` +〈A ∨ B〉

+∨
Θ ` −〈A〉 Θ ` −〈B〉

Θ ` −〈A ∨ B〉
−∨

Θ,+〈A〉 ` +〈B〉
Θ ` +〈A→ B〉

+→
Θ ` +〈A〉 Θ ` −〈B〉

Θ ` −〈A→ B〉
−→

Clearly, given In and Out, this system is equivalent to the previous one; both
are equivalent to Ketonen’s multiple conclusion classical sequent calculus.
However, only this latter system can properly be conceived of as providing
introduction rules for positively and negatively signed formulas, specifying the
grounds for affirming or denying a logically complex sentence.12 In particular,
the negation rules are just the introduction rules proposed by Rumfitt (2000)
in the context of his natural deduction system. They say that if a position Θ

commits one to denying A, then Θ commits one to affirming ¬A, and if Θ

commits one to affirming A, then Θ commits one to denying ¬A. The binary

12See Steinberger (2011, 349-353) for a criticism of Restall’s bilateralism on account of the
fact that it fails to provide such rules.
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connective rules say when a set of positions Θ commits one to a positive or
negative stance towards a sentence containing some binary connective.

To explain the conceptual significance of the binary rules, and, in particular,
the negative conjunction and positive disjunction rules, which likely look less
familiar than the others, note first that In and Out jointly yield the the structural
rule that Smiley (1996, 5) calls “Reversal”:

Γ,A ` B
Γ,B∗ ` A∗

Reversal

Indeed, the pair of rules, In an Out, might alternately by formulated as simply
Reversal where {A} or {B} can be null. With this structural rule in view, consider
the negative conjunction rule:

Θ,+〈A〉 ` −〈B〉
Θ ` −〈A ∧ B〉

−∧

This rule says that if a set of stances Θ along with an affirmation of A commits
one to denying B, then Θ commits one to denying A ∧ B. Note that, given
Reversal, if Θ along with an affirmation of A commits one to denying A, then,
just as well, Θ along with an affirmation of B commits one to denying A. So,
essentially, this rule for conjunction says that you’re committed to denying a
conjunction just in case affirming one of the conjuncts commits you to denying
the other. Dually, the positive conjunction rule:

Θ,−〈A〉 ` +〈B〉
Θ ` +〈A ∨ B〉

+∨

says that you’re committed to affirming a disjunction just in case denying one
of the disjuncts commits you to affirming the other. In this way, the premise
of the negative conjunction rule directly encodes a relation of incompatibility
or contraiety obtaining between the conjuncts, relative to one’s set of stances,
whereas and the positive disjunction directly encodes a relation of subcontraiety
obtaining between the disjuncts, relative to one’s set of stances.

I claim that this bilateral sequent system vindicates the sequent calculus
approach to inferentialism for classical logic: one can reasonably maintain
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that the rules of this system are definitive of the meanings of the classical
connectives. To officially show that these rules qualify for defining meanings,
let us now consider the harmony between the positive and negative rules of this
system, formally established by the proof of Cut Elimination. In this system,
the rule of Cut can be formulated as follows:

Θ ` ϕ Λ ` ϕ∗

Θ,Λ `
Cut

This says that if the position Θ commits one to the stance ϕ, and the position
Λ commits one to the opposite stance ϕ∗, then the position Θ,Λ is incoherent.
Formulated as such, Cut is not a kind transitivity principle, but, rather, a kind of
reductio principle, enabling one to include the incoherence of a position from the
fact that it commits one to opposite stances towards some sentence. The crucial
case in the proof of Cut Elimination for these connective rules shows that the
positive and negative introduction rules are such that the positions required
to commit one to opposite stances towards a logically compound sentence are
themselves incompatible. For instance, in the case of conjunction, if a position
Θ,Λ is incoherent in that Θ commits one to affirming A ∧ B and Λ commits
one to denying A ∧ B, then, even without the introduction of the opposite
stances towards conjunction, Θ,Λ is already incoherent in that it commits one
to opposite stances towards the conjuncts. Officially, we show this with the
following transformation:

Θ ` +〈A〉 Θ ` +〈B〉
Θ ` +〈A ∧ B〉

+∧
Λ,+〈A〉 ` −〈B〉
Λ ` −〈A ∧ B〉

−∧

Θ,Λ `
Cut

 

Θ ` +〈A〉

Θ ` +〈B〉 Λ,+〈A〉 ` −〈B〉
Θ,Λ,+〈A〉 `
Θ,Λ ` −〈A〉

Out

Θ,Λ `

Spelling out what is shown here, in the first proof we show what has to be the
case about Θ and Λ for these positions to respectively commit one to affirming
and denying A ∧ B. Given that Θ commits one to affirming A ∧ B, Θ commits
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one to affirming A and Θ commis one to affirming B. Given that Λ commits
one to denying A∧B, Λ along with an affirmation of A commits one to denying
B. In the second proof, we show that, given these facts about Θ and Λ, we can
conclude that the position Θ,Λ is incoherent even apart from the introduction
of opposite stances towards A ∧ B. Since Θ commits one to affirming B and Λ

along with an affirmation of A commits to denying B, Θ along with Λ along with
an affirmation A is incoherent, and that means that Θ along with Λ commits
one to denying A. But Θ also commits one to affirming A. So Θ,Λ is incoherent.

In the actual proof of Cut Elimination proof, we show first that Cut on
atomic formulas in eliminable, and we then induct on formula complexity
to show that Cut on logically complex formulas can always be reduced to
Cut on simpler formulas, so Cut in general is eliminable. Transformations
like this establish that inductive step. Now, the proof in the solely left-sided
system shown earlier, which is a direct translation of the proof in the standard
unilateral sequent notation, is a bit simpler, since one doesn’t need to deal with
the complication of using In and Out as one does here. However, I submit
that the proof of Cut Elimination in this system—in which transformations
like this figure—makes mainfest in the notation itself exactly how we should
understand the conceptual significance of the proof of Cut Elimination for
the classical sequent calculus. As Michael says, the proof of Cut Elimination
establishes harmony among the rules. However, the harmony established
by Cut Elimination is not between the rules for inferring to a sentence as a
conclusion and rules for inferring from that sentence as a premise; rather, Cut
Elimination establishes harmony between the rules for affirming a sentence and
rules for denying that sentence.

What, however, of the original understanding of Cut according to which
it expresses a principle of Transitivity, and the understanding Cut Elimina-
tion as demonstrating harmony between the grounds for asserting a logical
formula and consequences of asserting it? Is that understanding lost in this
sort of sequent system? Not in the least. Unlike the previous bilateral system,
we are able to recover all of this thinking about consequence in this bilateral
system. Note first that, while I have provided just right rules, codifying the
grounds for affirming or denying a sentence, corresponding left rules, codifying
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the consequences of affirming or denying a sentence, can be obtained immedi-
ately via Reversal. For instance, we have the following derrived left rules for
conjunction:

Θ,+〈A〉,+〈B〉 ` ϕ
Θ,+〈A ∧ B〉 ` ϕ

L+∧

Θ,−〈A〉 ` ϕ Θ,−〈B〉 ` ϕ
Θ,−〈A ∧ B〉 ` ϕ

L−∧

Now, consider the following rule, which I’ll just call “Transitivity”:

Θ ` ϕ Λ, ϕ ` ψ
Θ,Λ ` ψ

Transitivity

This just is the single conclusion Cut rule shown earlier, but with signed for-
mulas rather than unsigned formulas. Adapting Michael’s explication of the
significance of the eliminability of this rule to this bilateral context, proving
the eliminability of this rule establishes that the consequences of affirming
or denying a logically compound sentence are not too strong relative to the
grounds of affirming or denying that sentence. In this system, the eliminability
of Transitivity follows directly from the eliminability of Cut, as Transitivity can
be directly derived from Cut as follows:

Θ ` ϕ
Λ, ϕ ` ψ

Λ, ψ∗ ` ϕ∗
Reversal

Θ,Λ, ψ∗ `
Cut

Θ,Λ ` ψ
Out

So, when it comes to coherence and consequence, one can truly have one’s cake
and eat it too.

6 Conclusion

My aim here has been to follow Michael in trying to understand the philosoph-
ical significance of the sequent calculus when it comes to giving an account of
the meanings of the logical connectives. One thing I hope to have shown is
that the interpretive task, of trying to make sense of such systems as Ketonen’s
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classical sequent calculus, is often not seperable from the logical task, of devel-
oping new logical notations and systems involving their use. There is, I take
it, a Wittgensteinian moral here in the philosophy of logic. The core concepts
we deploy to make sense of logical systems, such as affirmation and denial or
truth and falsity, are themselves conferred by our use of linguistic expressions,
and formally codifying this use in a logical system can help bring to reflective
consciousness the core concepts that are articulative of our capacity for logical
thought. In his book The Logical Alien, Jim classifies someone engaged in dis-
tinctively philosophical logic as aiming “to achieve a self-understanding of what
she, the logical subject, is doing when she thinks,” (358). I hope I’ve done a
bit to show how work in formal logic, of the sort Michael pursued early in his
career and I have pursueed here, might be understood as oriented towards the
acheivment of that aim.
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