
9
Natural Deduction for PL

When we put forward the semantics for SL in terms of truth-tables in Chapter
3, this gave us an algorithmic way of checking whether or not an argument is
valid: we simply construct the truth-table for each sentence in the argument and
check if there’s any row in which all of the premises are true and the conclusion
is false. We realized, at the end of last chapter, that, in order to determine
whether an argument of PL is valid, we can’t simply check all of the models to
see if there’s any model in which all of the premises are true and the conclusion
is false—there’s simply too many possible models! Accordingly, whereas, in SL,
using a deductive system wasn’t actually necessary to determine the validity of
arguments, in PL, it is. In this chapter, we’ll put forward rules for the quantifiers
to add to the natural deduction system introduced in Chapter 5.

9.1 Universal Quantifier Rules

As with the other connectives from SL, each quantifier will be given an intro-
duction rule, which lets us conclude a sentence containing that quantifier as
its main connective from other things, and an elimination rule, which lets us
conclude other things from a sentence containing that quantifier as its main
connective. Let’s start with the universal quantifier rules. Consider first the
elimination rule, known as universal instantiation:

Universal Quantifier Elimination Rule:

j ∀u(X)
...

k X[n/u] ∀E j

133



134 CHAPTER 9. NATURAL DEDUCTION FOR PL

This says that if know that ∀u(X) is true, then we can conclude the truth of any
substitution instance of X. So, for instance, consider the proof of “Socrates is
mortal” from “All humans are mortal” and “Socrates is a human.”

1 ∀x(Hx→Mx) prem.

2 Hs prem.

3 Hs→Ms ∀E 1

4 Ms →E 2, 3

So, since we know that every human is mortal, we can eliminate the quantifier
and conclude in line 3 that if Socrates is human, then he is mortal. Then we
simply apply modus ponens to conclude that Socrates is mortal.

Consider now what rule we should have for introducing a formula of the
form ∀uX. Consider, for instance, the simple formula ∀x(Fx). This says that
everything is F. How on earth could we go about proving that? One way, of
course, would be to consider literally every thing and prove of each and every
thing that it is F. That, however, would take way too long. Indeed, since our
domains can contain an infinite number of things, it could take forever. Our
strategy, then, will not be to consider all of the things, but, rather, to consider
an arbitrary thing, something about which we have no information at all, and
conclude of this thing that it is F. If we’re able to conclude of an arbitrary thing
that it’s F, then the reasoning that we just did will generalize to everything, and
so we’re able to conclude that everything is F.

To formulate this idea officially as a rule, let us introduce a new kind of rule
for flagging a name that functions arbitrarily in the context of a proof:

Arbitrary Name Rule: You can write down n as a line of a proof or
as part of the justification of a line of a proof only if n hasn’t occurred
in any prior line of the proof and doesn’t occur in the premises or
conclusion.

A line of a proof with a boxed name n can be understood as saying consider
an arbitrary object that we’ll call n, or let n be an arbitrary object. Unlike the other
lines of a proof we have rules for so far, in a line of this sort, you’re not actually
asserting something. Rather, you’re stipulating a use of a name as referring to



9.1. UNIVERSAL QUANTIFIER RULES 135

an arbitrary object. The rule for such a stipulation is that n can’t be anything that
we’ve already said things about, anything we already have knowledge about
by way of our premises, or anything about which we’re trying to conclude
something. We’ll call names in our proof that we’ve introduced in accordance
with this rule “Arbitrary names” or “A-names” for short.

With the boxed name rule, we can now provide the official rule for introduc-
ing a universal quantifier that formally codifies the idea informally expressed
above. Suppose we want to conclude ∀u(X), where X presumably contains
some free occurences of the variable u. To conclude this, we’ll try to conclude a
substitution instance of X with respect to the name n, but with the crucial caveat
that the name n is arbitrary. If we do this, we can universally generalize on the
name n, replacing all occurences of it with u and sticking a universal quantifier
in front of it. Thus, for instance, if we can conclude Fa for an arbitrary name a,
then we can conclude ∀x(Fx). In general, our rule is the following:

Universal Quantifier Introduction Rule:

j n
...

k X[n/u]

l ∀u(X) ∀I j-k

Where X contains neither n nor any A-name that de-
pends upon n (i.e. any name m from which there is a
path: m → n )

You’ll note that this rule comes with a restriction written below. The first part
of the restriction simply says that, when we universally generalize on the name
n, we need to substitute all of the occurrences of n with u. The second part is
closely related, but let’s ignore it for the moment and get back to it once we’ve
introduced the existential quantifier rules. So, ignoring this restriction, the
universal quantifier introduction rule says that, in order to introduce a formula
of the form ∀u(X), where u (presumably) occurs freely in X, we first have to
introduce an arbitrary name n. Then, we do some reasoning and, in the same
subproof, conclude the substitution instance X[n/u] in which all occurences of u



136 CHAPTER 9. NATURAL DEDUCTION FOR PL

have been substituted with n. Having done that, we can universally generalize
on n, concluding the universally quantified statement, ∀u(X). To illustrate how
this rule works, consider the following proof of ∀x((Fx ∧ Gx)→ Fx):

1 a

2 Fa ∧ Ga asm

3 Fa ∧E 2

4 (Fa ∧ Ga)→ Fa →I 2-3

5 ∀x((Fx ∧ Gx)→ Fx) ∀I 1-4

Intuitively, this proof reads as follows. Consider an arbitrary object a. Now
suppose that Fa ∧ Ga. It follows, by conjunction elimination, that it’s true
that Fa. Accordingly, by the conditional introduction rule, we can conclude
(Fa∧Ga)→ Fa. Since, a was arbitrary, we can conclude that this holds of every
object. So, we can conclude ∀x((Fx ∧ Gx)→ Fx).

The reason we have to introduce an arbitrary name before universally gen-
eralizing on that name should be obvious. If we didn’t have that restriction, we
could reason from the claim that “Kermit is green” to the sentence “Everything
is green” as follows.

1 Gk prem.

2 ∀x(Gx) ∀I 1? incorrect use of universal quantifier rule!

Our rules prevent this fallacious reasoning by making it such that, in order to
conclude ∀x(Gx), you need to first introduce an arbitrary name and then uni-
versally generalize on that name, and it’s one of the restrictions on introducing
an arbitrary name that this name can’t occur in any of the premises.

It’s very important that the substitution instance X[n/u] with the arbitrary
name n from which you infer the universally quantified sentence occurs in the
same subproof as your boxed name. To see why, consider the following incorrect
proof of ∀x(Fx→ ∀y(Fy)).



9.2. EXISTENTIAL QUANTIFIER RULES 137

1 a

2 Fa asm.

3 ∀y(Fy) ∀I 1-2? incorrect use of universal quantifier rule!

4 Fa→ ∀y(Fy) →I 2-3

5 ∀x(Fx→ ∀y(Fy)) ∀I 1-4

The conclusion here says that everything is such that if it’s F then everything is
F. Clearly, we shouldn’t’ be able to prove this, so something has gone wrong.
The problem is that we assumed, on line 2, that a is F, and so in the context of that
subproof, the name a is no longer occurring arbitrarily. So, we can’t universally
generalize from something we conclude about a in the context of that subproof
given that assumption. Our rules prohibit this by making it such that, if we
want to introduce a universal quantifier in the context of a subproof, we have
to introduce a new boxed name in the context of that subproof. This ensures
that the hypothetical thing that we’re reasoning about in the context of that
subproof is genuinely arbitrary when we make a universal generalization.

9.2 Existential Quantifier Rules

As we’ve said, our universal quantifier introduction rule is known as universal
generalization, whereas our universal quantifier elimination rule is known as
universal instantation. For the existential quantifier, we rules of the same basic
form: an introduction rule of existential generalization and an elimination rule
of existential instantiation. The rule of existential generalization has none of the
restrictions that that the rule of universal generalization has. It is simply the
following rule:

Existential Introduction:
j X[n/u]

...

k ∃u(X) ∃I j

So, our introduction rule let’s us existentially generalize, concluding ∃u(X)
from any substitution instance of X, where all free occurences of u have been



138 CHAPTER 9. NATURAL DEDUCTION FOR PL

substituted with any name n. For instance, if we want to conclude ∃x(Fx), we
can do so by concluding Fa, Fb, or any other formula of the form Fn, for any
name n. The basic idea is just that if we know of any particular thing that it’s
F—be it a, b, c, or what have you—we can conclude that there exists something
that’s F. In this case, n doesn’t need to be arbitrary. Moreover, unlike the case
of universal generalization, it’s perfectly permissible to leave some occurences
of the name on which we’re generalizing in the formula X. That is, when we
existentially generalize, we’re not required to substitute all occurrences of n
with u—we’re permitted to substitute only some. So, for instance, if we know
that Alice loves herself, not only can we conclude that someone loves themself,
but we can also conclude that Alice loves someone and that someone loves
Alice. That is, given Laa, not only can we conclude ∃x(Lxx), but we can also
conclude ∃x(Lax) and ∃x(Lxa).

The elimination rule for the existential quantifier, on the other hand, requires
that we instantate with an arbitrary name. The rule is the following:

Existential Elimination Rule:
j ∃u(X)

...

k X[n/u] ∃E j, n

If X contains another A-name m, then n depends upon
m, and an arrow is drawn from n to m

You’ll note that the additional condition under this rule is related to the restric-
tion on the universal quantifier introduction rule, but, once again, let’s ignore
this condition for the moment. The elimination rule let’s us move from ∃u(X)
to X[n/u] insofar as n is a new arbitrary name. The basic thought is that, if we
have an existentially quantified sentence such as ∃x(Fx), then we know that
there’s something that’s F, and so we can stipulate an arbitrary name n to refer
to that thing, whatever it is, that is F. You can think of application of this rule
as saying let’s call the thing that’s F “n” or let n be the thing that’s F.

This sort of step is very common in the context of mathematical proofs. For
instance, if I want to prove that there is an infinite number of primes, I suppose
that I have a list of prime numbers p1, p2 . . . p3. Now, I know that, for every set of



9.3. SOME PROOFS USING THESE RULES 139

numbers, there exists a number that is the sum of all of those numbers plus one.
So, I can say “Let a = p1, p2 . . . p3 +1,” and I can then go on to show that either a is
prime or there is some prime factor of a not in this list. It’s crucial that the name
“a” here is arbitrary. For instance, I can’t say “Let 7474967 = p1, p2 . . . p3 + 1,”
and then go on to show that 7474967 is prime, since the name “7474967” is
already in use!

To see how these rules work, consider the simple proof of ∃x(Fx) ∧ ∃x(Gx)
from ∃x(Fx ∧ Gx):

1 ∃x(Fx ∧ Gx) prem.

2 Fa ∧ Ga ∃E, 1, a

3 Fa ∧E 2

4 ∃x(Fx) ∃I 3

5 Ga ∧E 2

6 ∃x(Gx) ∃I 5

7 ∃x(Fx) ∧ ∃x(Gx) ∧I 4, 6

Our premise, ∃x(Fx∧Gx), tells us that there’s something that’s both F and G. In
line 2, we stipulate a new arbitrary name a for this “something,” writing down
the substitution instance Fa ∧ Ga. In order to make sure that our use of a is
genuinely arbitrary here, we need to check that a is not used in any line above
line 2, and it’s not used in the conclusion we’re trying to prove. It’s not, so
writing Fa∧Ga in line 2 is a correct use of the ∃E rule. It follows by conjunction
elimination that Fa, and so, in line 4, we conclude by ∃I that there’s something
that’s F. Likewise, it follows by conjunction elimination that Ga, and so we
conclude in line 6 that there’s something that’s G. Putting lines 4 and 6 together
with conjunction introduction, we conclude ∃x(Fx)∧∃x(Gx): there’s something
that’s F and there’s something that’s G.

9.3 Some Proofs Using These Rules

Let’s now consider a few proofs that combine the universal and the existential
quantifier rules. Consider how we prove ∃x(Fx)→ ∃x(Gx) from ∀x(Fx→ Gx):



140 CHAPTER 9. NATURAL DEDUCTION FOR PL

1 ∀x(Fx→ Gx) prem.

2 ∃x(Fx) asm.

3 Fa ∃E 2, a

4 Fa→ Ga ∀E 1

5 Ga →E 3, 4

6 ∃x(Gx) ∃I 5

7 ∃x(Fx)→ ∃x(Gx) →I 2-6

Note the difference between line 3 and line 4. When we eliminate an existential
quantifier, we have to do so with an arbtrary name, since we only know there’s
something of which X is true. So, on line 3, a has to be new, which we indicate
by putting a as part of the justification for that line. When we eliminate a
universal quantifier, on the other hand, we can use any name, since we know
that X is true of everything. So, on line 4, we can use ∀E on line 1 to conclude
Fa→ Ga, even though a is already in use. Note that, if we tried to do things in
the other order, introducing Fa→ Ga on line 3, we wouldn’t be able to introduce
Fa on line 4, since that name would already be in use. In general, when we
want to establish a logical relation between an existentially quantified sentence
and a universally quantified one, it’s a good strategy to existentially eliminate
first, using a new name, and then universally eliminate second, using that same
name.

Let’s now look at the proofs of the most important equivalences in PL:
negated quantifier equivalences. These tell us that ¬∃u(X) is equivalent to ∀u¬(X),
and ¬∀u(X) is equivalent to ∃u(¬X). We can prove these facts in this general
notation, but, for simplicity, let us just prove the equivalence of ∀x¬(Fx) and
¬∃x(Fx). The two proofs go as follows:

1 ∀x(¬Fx) prem.

2 ∃x(Fx) asm.

3 Fa ∃E, 2, a

4 ¬Fa ∀E 1

5 ¬∃x(Fx) ¬I 2-4

1 ¬∃x(Fx) prem.

2 a

3 Fa asm.

4 ∃x(Fx) ∃I 3

5 ¬∃x(Fx) reit. 1

6 ¬Fa ¬I 3-5

7 ∀x(¬Fx) ∀I 2-6



9.4. DEPENDENCE AMONG A-NAMES 141

The strategy for these proofs is straightforward. For the proof on the left, we
want to prove a negation, so we start by assuming the negated sentence ∃x(Fx),
and hoping to derive a contradiction. We then use ∃E on our assumption to
get Fa and then ∀E on our premise to get ¬Fa. Once again, it’s important that
we use existential elimination first here, since the name we use with existential
elimination has to be arbitrary, whereas the name we use with universal elim-
ination can already be in use. For the proof on the right, we want to prove a
universally quantified sentence, so we start by stipulating an arbitrary name a.
We want to prove ¬Fa, so we assume Fa, hoping to derive a contradiction. To
do this, we use existential introduction to get ∃x(Fx), and then we reiterate our
premise to get the contradiction. The proofs of the equivalence of ¬∀x(Fx) and
∃x¬(Fx) are left as an exercise for you to do yourself. One is very simple, and
one is a bit tricky!

9.4 Dependence Among A-Names

Now that we’ve gotten a sense of how our quantifier rules work, let us return
to consider the restriction on the universal quantifier introduction rule: that,
when we conclude some substitution instance of X containing A-name n, which
enables us to conclude∀u(X), this formula X over which our universal quantifier
ranges can’t contain n nor any A-name that depends upon n. The first part of this
restriction is straightforward. The fact that X cannot contain n simply means
that, when we universally generalize on n in the substitution instance X[n/u],
we must replace all occurrences of n with u. We’ve already mentioned this
restriction when we introduced the rule, but let’s now see why it’s important.
Consider the attempted proof of the clearly false claim that there is some number
that is equal to every number, with the bad step marked with a hash-mark:

1. Every number is equal to itself.

2. Now, let a be an arbitrary number.

3. It follows that a is equal to a.

4. # Since a was arbitrary, every number is equal to a.

5. So, there’s some number that is equal to every number.



142 CHAPTER 9. NATURAL DEDUCTION FOR PL

Clearly, this is bad reasoning, and the problem is clearly with step 4: when you
universally generalize on some arbitrary name, you can’t keep any occurrences
on that name in the universally quantified formula that you conclude. So, the
only universally quantified formula you can conclude from line 3 is the one
you already have: every number is equal to itself. Formally representing this
argument, our proof system blocks the fallacious step 4:

1 ∀x(Exx) prem.

2 a

3 Eaa ∀E 1

4 ∀x(Exa) ∀I 2-3? incorrect use of universal quantifier rule!

5 ∃y(∀x(Exy)) ∃I 4

If one wants to apply ∀I to the formula on line 3, to conclude a universally
quantified formula over the variable x, one needs to replace all occurances of a
with x. Thus, the only thing one can conclude is the premise one already has:
∀x(Exx).

Let’s now turn to the the second part of the restriction—that beyond just
not containing n, X also can’t contain any name that depends upon n. In the
last chapter, we showed that the argument with the premise ∀x(∃y(Ryx)) and
the conclusion ∃y(∀x(Ryx)) is invalid by constructing a model in which the
premise was true and the conclusion was false. The example we considered as
an instance of this argument was a philosophical one, where Ryx was y causes
x. But let’s now switch up the example to a mathematical one, supposing our
domain is real numbers and Ryx is y is the cube root of x. Consider now the
following bad line of reasoning, with the bad step marked with a hash-mark:

1. Every number has a cube root.

2. Now, let a be an arbitrary number.

3. It follows that there exists a number that is the cube root of a.

4. Let us call this number b.

5. # Since a is arbitrary, and b is it’s cube root, it follows that every number
has b is as its cube root.



9.4. DEPENDENCE AMONG A-NAMES 143

6. So, there’s some number that is the cube root of every number.

The name b in the above “proof” designates an arbitrary number but one whose
value depends upon the value of a. The notion of dependence here is the same
as the notion of dependence between variables that you might have learned in
grade school algebra. In an equation such as b = 3√a, b is the dependent variable,
whereas a is the independent variable: the value of b is defined only in relation
to a. Accordingly, if we want to universally generalize on the arbitrary name
a—moving from a claim about a to a claim not about a particular thing but about
everything—for the same reason our claim can’t contain a, it can’t contain b
either.

Our proof system generalizes this notion of dependence, and codifies this
restriction by making us draw an arrow every time we use existential elimina-
tion on a formula containing an A-name. To see this, consider the following
attempted proof of ∀x(∃y(Ryx)) from ∃y(∀x(Ryx)), which the problematic step
is blocked by the restriction on ∀I rule:

1 ∀x(∃y(Ryx)) prem.

2 a

3 ∃y(Rya) ∀E 1

4 Rba ∃E, 3, b note: b depends upon a

5 ∀x(Rbx) ∀I 2-4? incorrect use of the universal quantifier rule!

6 ∃y(∀x(Ryx)) ∃I 5

When we apply ∃E on line 3, instantiating with the new A-name b to conclude
Rba 4, we have to check to see if this formula contains any other A-name. It
contains, the name a, and so we have to draw an arrow from b to a . Since
Rba contains b, and b depends upon a, we can’t universally generalize on a
and conclude ∀x(Rbx), as we incorrectly do in line 5. In general, in order to
universally generalize on an A-name n in a formula X, we need to to be sure
that X contains no A-name on which n depends. That is, there must be no arrow
(or path of arrows) going from any A-name X contains to n. So, in the context of
this proof, we know that we can’t universally generalize on a in the context of



144 CHAPTER 9. NATURAL DEDUCTION FOR PL

the formula Rba, since Rba contains some occurrences of b, and there’s an arrow
going from b to a. If we do want to universally generalize, we have to get the
b’s out of this formula. So, for instance, we could existentially generalize first
to conclude ∃x(Rxa), and then universally generalize to conclude ∀y(∃x(Rxy)),
a sentence which, of course, is entailed ∀x(∃y(Ryx) (since it’s just the same
formula with the variables switched).

To see the contrast between the above bad case in which the ∀I rule is broken
and a good case in which the rule is followed, consider the following correct
proof of the opposite direction of entailment:

1 ∃y(∀x(Ryx)) prem.

2 a

3 ∀x(Rbx) ∃E, 1, b

4 Rba ∀E 3

5 ∃y(Rya) ∃I 4

6 ∀x(∃y(Ryx) ∀I 2-5

Here, when we introduce the A-name b in line 3, b doesn’t depend upon a, since
a is not in existentially quantified formula that is instantiated with b. Moreover,
a doesn’t depend upon b, since it’s only the context of existential elimination
that A-names can be introduced as dependent upon other A-names.

To further illustrate these notions, let’s consider a more involved proof.
Consider the proof of ∀u(∃v(∀s(∃t(Ruvst)))) from ∀x(∃y(∀z(∃w(Rxyzw)))). Now,
we’d normally never want to prove such a thing, but, since we’re just swapping
out all of the variables with different variables, we know that if the first formula
is true, then the second formula must also be true. So, we should be able to
prove this in our system, and it will be instructive to do so. Here’s the proof,
with the arrows indicating the relations of dependence between A-names:



9.4. DEPENDENCE AMONG A-NAMES 145

1 ∀x(∃y(∀z(∃w(Rxyzw)))) prem.

2 a

3 ∃y(∀z(∃w(Rayzw))) ∀E 1

4 ∀z(∃w(Rabzw)) ∃E 3, b

5 c

6 ∃w(Rabcw) ∀E 4

7 Racbd d

8 ∃t(Rabct) ∃I 7

9 ∀s(∃t(Rabst)) ∀I 5-8

10 ∃v(∀s(∃t(Ravst))) ∃I 9

11 ∀u(∃v(∀s(∃t(Ruvst)))) ∀I 2-10

Let’s walk through this proof step by step. The conclusion we want to end up
with is a universally quantified sentence, and so we start by stipulating a new
arbitrary name a on line 2, hoping to conclude the substitution instance of the
universally quantified formula shown on line 10. We universally instantiate on
line 3, and then, on line 4, we existentially instantiate with a new name b. Since
the formula we’re existentially instantiating on contains the name a, we draw
an arrow from b to a to show that b depends upon a. In line 5, we introduce
a new name c, which doesn’t depend on any names. In line 6, we universally
instantiate with that name. In line 7, we existentially instantiate with a new
name, d. Since the formula from which we’re existentially instantiating contains
the names a, b, and c, it depends upon all of these names. So, we draw an arrow
from d to c and from d to b. We don’t need to draw an arrow directly from d to
a (though doing so wouldn’t hurt), since if we show that d depends on b and
that b depends on a, we’ve thereby shown that d depends on a. In line 8, we
existentially generalize on d. In line 9, we universally generalize on the name
c. In order to make sure we can do this, we have to check that neither of the
names in this formula, a or b, depend upon c. Neither of them do, so our use of
∀I here is legal. In line 10, we existentially generalize on b. Finally, in line 11,
we universally generalize on a, arriving at our conclusion.



146 CHAPTER 9. NATURAL DEDUCTION FOR PL

You’ll almost never have to prove something with this many nested quan-
tifiers, so don’t feel overwhelmed at the prospect of constructing such a proof.
However, make sure you understand why the arrows in the above proof must
be drawn the way that they are drawn, and how they restrict the inferences
we’re allowed to make. Note, for instance, that, if we wanted to universally
generalize on a rather than c in line 9, we couldn’t since the formula we’d
universally generalizing contains b, which depends upon a.

Historical Note:
The general sort of existential quantifier rules that we’re using were

put forward by W.V.O. Quine in 1950 and also in a popular textbook
by Irving Copi in 1954 (though Copi’s original formulation was in-
correct and it took several iterations of corrections after 1954 for the
rules to be stated correctly). The specific approach to these rules
adopted here, thinking of dependence relations between arbitrary names
and drawing arrows to indicate these relations, is owed to Kit Fine,
who systematically developed this approach to quantifi-
cation in his 1985 book Reasoning with Arbitrary Objects.
Fine actually argues in that book that there really are ar-
bitrary objects. That is, in addition to particular human
beings like Socrates or particular numbers like the num-
ber 4, there are such things as arbitrary human beings
and arbitrary numbers. That’s a bit of contentious meta-
physics that we don’t need to subscribe to in order to
make use of the formal tools Fine develops in spelling
out this idea.

9.5 Proofs, Validity, and Invalidity

As with the natural deduction system for SL, which was sound and complete
with respect to the semantics of SL, this system is sound and complete with
respect to the semantics of PL. Accordingly, as long as you follow the rules for
the quantifiers, you’ll never be able to prove some conclusion from some set of
premises if the argument with those premises and that conclusion isn’t valid.



9.5. PROOFS, VALIDITY, AND INVALIDITY 147

Moreover, you’ll be able to prove the conclusion of any valid argument from
its premises. It might be tricky, but, if the conclusion does follow from the
premises, there’s a way to do it. There is, however, one contrast with SL worth
reiterating.

In SL, if you’re trying to prove some conclusion from some set of premises
and you’re stuck, you can always construct the truth-table to be sure that the
argument really is valid, and so there really is some proof of it to be constructed.
In PL, however, if you get stuck trying to prove an conclusion from some set
of premises, and you wonder whether the argument really is valid, insofar as
the argument is relatively complex, there is no foolproof way to confirm that
it is indeed valid other than actually proving it. The best thing to do, in a case
where you really seem stuck, is to reason about whether it could possibly be
invalid, using where you’ve gotten stuck to aid you in thinking about how you
could try to construct a countermodel. For instance, if you’ve done a bunch
of a proof there’s one step from X to Y that you know you need but you can’t
seem to get, see if you an construct a model in which X is true and Y is false.

Let’s take a simple example to illustrate this strategy. Suppose we’re trying
to prove ∃x(¬Px) from ∀x((Px ∧ Rx) → Qx) and ∃x(¬Qx). We’ve started the
proof and gotten this far:

1 ∀x((Px ∧ Rx)→ Qx) prem.

2 ∃x(¬Qx) prem.

3 ¬Qa ∃E, 2, a

4 (Pa ∧ Ra)→ Qa ∀E, 1

5 ¬(Pa ∧ Ra) MT, 3, 4

6
... ??

7 ¬Pa ??

8 ∃x(¬Px) want to conclude by ∃I from 6

We’re stuck, since we don’t have any rules that will get us from ¬(Pa ∧ Ra) to
¬Pa, given what we have. So, rather than banging our head against the wall to
try to get the proof to go through, let’s pause and see if we’re trying to prove
an invalid argument by trying to construct a model in which ¬(Pa ∧ Ra) is true



148 CHAPTER 9. NATURAL DEDUCTION FOR PL

and Pa is false, where, once again a something that’s not Q. Of course, this is
easy to do:

Domain: {1}

a: 1

Q: {}

P: {1}

R: {}

Checking that this makes the premises of the argument true and the conclusion
false, we see that the reason we weren’t able to prove the conclusion from the
premises is that the argument is invalid!

Finally, one small sidenote. You’ll see that I’ve written “MT” in the above
proof for “Modus Tollens,” where I’ved inferred¬(Pa∧Ra) from (Pa∧Ra)→ Qa
and ¬Qa. We learned the trick for officially making this inference in Chapter
6: you need start a subproof with Pa ∧ Ra, use conditional elimination (modus
ponens) to get Qa, and then reiterate ¬Qa into that subproof to get a contradic-
tion and conclude ¬(Pa ∧ Ra) by negation introduction. In the SL proofs you
did in Chapters 5 and 6, I required that you actually do the proofs using only
the official rules for the sentential connectives. In this chapter, since our focus
in on the rules for the quantifiers, you’re free to use the shortcuts for making SL
inferences from Chapter 6, as I have here. However, in the excercises I’ve given
you for this chapter, all of the focus is on mastering the quantifier rules, and so
you won’t actually need to use any of these tricks to make the proofs shorter.

9.6 Wrapping Up

Finally, to conclude, let us consider once more the argument from the Nāgarjūna
that we’ve now represented in PL as follows:

Premise 1: ∀x∀y(Cxy→ (Iyx ∨ Eyx))
Premise 2: ∀x∀y(Cxy→ ¬Iyx)
Premise 3: ∀x∀y(Cxy→ ¬Eyx)
Conclusion: ¬(∃x∃y(Cxy))



9.7. EXERCISES 149

The proof of this argument is straightforward (I’ve compressed some succes-
sively applications of quantifier elimination rules into single steps):

1 ∀x∀y(Cxy→ (Iyx ∨ Eyx)) prem.

2 ∀x∀y(Cxy→ ¬Iyx) prem.

3 ∀x∀y(Cxy→ ¬Eyx) prem.

4 ∃x(∃y(Cxy)) asm.

5 Cab ∃E, a , ∃E, b , 4

6 Cab→ (Iab ∨ Eab) ∀E, ∀E, 1

7 Cab→ ¬Iab ∀E, ∀E, 2

8 Cab→ ¬Eab ∀E, ∀E, 3

9 Iab ∨ Eab →E 6

10 ¬Iab →E 7

11 Eab ∨E 9, 10

12 ¬Eab →E 8

13 ¬∃x(∃y(Cxy)) ¬I 4-12

We make the same basic inferences as we did before when we represented
this argument in SL, but now our proof system captures the generality that
the argument is meant to have. We suppose that there exist some two objects
that stand in a causal relation, and so we consider a pair of arbitrary objects,
a and b, which are supposed to stand in a causal relation. We then derive a
contradiction: a must be both extrinsic to b and not extrinsic to b. Having
concluded this about two arbitrary objects, we can conclude that there does not
exist any objects that stand in a causal relation.

9.7 Exercises

9.1 Each of the following attempted proofs contain some mistake. Identify at
which line the mistake occurs, and say what the mistake is (1pt each).

a) ———–



150 CHAPTER 9. NATURAL DEDUCTION FOR PL

1 Ca prem.

2 ∃x(Bx) prem.

3 Ba ∃E 2, a

4 Ca ∧ Ba ∧I 1, 3

5 ∃x(Cx ∧ Bx) ∃I 4

b) ————

1 ∀x(Lxx) prem.

2 a

3 Laa ∀E 1

4 ∀x(Lax) ∀I 2-3

c) ————

1 ∃x(Px) prem.

2 Pa ∃E 1, a

3 ∀x(Px) ∀I 2

d) ———-

1 ∀x(∃y(Fxy ∧ (Gy→ Gx))) prem.

2 a

3 ∃y(Fay ∧ (Gy→ Ga)) ∀E 1

4 Fab ∧ (Gb→ Ga) ∃E 3, b

5 Gb→ Ga ∧E 4

6 Gb asm.

7 Ga →E 5, 6

8 ∀z(Gz) ∀I 2-7

9 Gb→ ∀z(Gz) →I 6-8

10 Fab ∧E 4

11 Fab ∧ (Gb→ ∀z(Gz))) ∧I 9, 10

12 ∃y(Fay ∧ (Gy→ ∀z(Gz))) ∃I 11

13 ∀x(∃y(Fxy ∧ (Gy→ ∀z(Gz)))) ∀I 2-12

e) ————



9.7. EXERCISES 151

1 ∀x(Fx ∧ Gx) prem.

2 ∀x(Fx→ ∃y(Lyx)) prem.

3 a

4 Fa→ ∃y(Lya) ∀E 2

5 Fa ∧ Ga ∀E 1

6 Fa ∧E 5

7 ∃y(Lya) →E 4, 6

8 Lba ∃E 7, b

9 ∀x(Lbx) ∀I 3-8

10 ∃y(∀x(Lyx)) ∃I 9

11 Ga ∧E 5

12 ∀x(Gx) ∀I 3-11

13 ∀x(Gx) ∧ ∃y(∀x(Lyx)) ∧I 10, 12

9.2 Prove the following (2 pts each):

a) ∀x(Fx ∨ Gx) ` ∃x(¬Fx)→ ∃x(Gx)

b) ¬∃x(Fx ∧ Gx) ` ∀x(Fx→ ¬Gx)

c) ∃x(Fx ∧ Gax),∀y(∃x(Gxy)→ ¬Hy) ` ∃x(Fx ∧ ¬Hx)

9.3 Prove the other negated quantifier equivalence. That is, prove the follow-
ing (2 pts each):

a) ¬∀x(Fx) ` ∃x(¬Fx)

b) ∃x(¬Fx) ` ¬∀x(Fx)

9.4 Prove the following, making sure to draw arrows to indicate the relations
of dependence between A-names:

a) ∀x(∃y(∀z(Rxyz))) ` ∀w(∃u(∀v(Rwuv)))

b) ∃x(∀y(∃z(Rxyz))) ` ∃w(∀u(∃v(Rwuv)))

9.5 The existential quantifier elimination rule we introduced is different than
the rule that Gentzen originally introduced, which you’ll find most other
introductory books (at least, ones that give you a proof system in which
each quantifier is given an introduction and an elimination rule). That
alternative rule, formulated in our notation, is the following:



152 CHAPTER 9. NATURAL DEDUCTION FOR PL

Gentzen’s rule:

j ∃u(X)

k X[n/u] n
...

l Y

m Y gentzen, j, k-l

where n doesn’t occur in Y

The idea is similar to the proof by cases rule for eliminating disjunctions.
If you can conclude Y from a specific substitution instance of X, where the
name substituted is arbitrary, then you can conclude Y from the existen-
tially quantified sentence which says that there is some true substitution
instance.

Using these rule makes formulating the rules a bit simpler, since, without
an existential instantiation rule, we wouldn’t need to define the relation of
dependence between A-names. However, the trade off is that our proofs
end up being much more simple and intuitive whereas, with this rule,
a lot of proofs that that should be quite simple become quite tricky and
unintuitive.

For this problem, suppose I gave you a system which contained this ex-
istential elimination rule instead of ours, and, using only this elimination
rule, along with the rest of our rules, prove the following:

a) ∀x(Fx→ Gx) ` ∃x(Fx)→ ∃x(Gx) (2pts)

b) Bonus: ∀x¬(Fx) ` ¬∃x(Fx) (+2pts)


